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The nonlinear evolution of rotating configurations 
of uniform vorticity 
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The nonlinear evolution of perturbed equilibrium configurations of constant-vorticity 
vortices is calculated. To illustrate a variety of nonlinear behaviour, we consider the 
following relatively simple configurations : the corotating configurations of N vortices 
whose linear stability has been treated in a previous study; the elliptical vortex; and 
the annular vortex. Our calculations test for nonlinear stability as well as categorize 
the possible forms of stability and instability. The energy ideas announced in the 
previous study are found to greatly constrain vortex evolution. In particular, we 
show that two vortices and an elliptical vortex may evolve into each other, and that 
an annular vortex may break cleanly into five co-rotating vortices. 

1. Introduction 
We investigate the two-dimensional, nonlinear evolution of piecewise-constant 

vorticity distributions in an inviscid, incompressible and unbounded fluid. Particular 
interest is paid to initial conditions that are close to certain corotating equilibria, in 
an attempt to extend linear and nonlinear stability results and to categorize the full 
spectrum of evolutionary behaviour for certain simple configurations : elliptical, 
annular and multiple vortices (Dritschel 1985). We find that these configurations, 
when disturbed, in some instances evolve ‘close’ to other equilibria. How close 
depends crucially upon energy and angular momentum similarities between the 
equilibria and to a lesser extent upon the precise initial perturbation. First, however, 
we review many of the ideas that underpin the present study. 

Originally, Deem & Zabusky (1978a, b) began exploring the evolution of certain 
piecewise-constant vorticity distributions after having discovered that the dynamics 
of these distributions depend only upon the boundaries or contours that separate 
uniform regions of vorticity. Zabusky, Hughes & Roberts (1979) presented further 
simulations of what they termed ‘contour dynamics’. Zabusky (1981), Overman & 
Zabusky (1982), Wu, Overman & Zabusky (1984), and others have continued 
research on the dynamics of interacting vortices. These works have dealt with 
improving the numerical algorithm, performing calculations with more complex 
initial conditions (some of which are repeated here), finding new equilibria, and 
numerically testing the stability of equilibria. 

Before the advent of contour dynamics, the only known equilibria were in the form 
of circular distributions of vorticity and ellipses (Kirchoff 1876). More than a century 
passed before new equilibria were found, and computational methods were then 
necessary. Deem & Zabusky (1978a, b) found several members of certain families of 
equilibria: m-fold single-vortex states (m = 2 corresponds to the family of ellipses) 
and translating two-vortex states. Subsequently, solutions were calculated by 

t Present affiliation : Department of Applied Mathematics and Theoretical Physics, University 
of Cambridge, Cambridge CB3 9EW, UK. 

6-2 



158 D.  G. Dritschel 

Saffman & Szeto (1980) for a pair of equal, corotating vortices, Pierrehumbert (1980) 
for the entire family of translating two-vortex states, Pierrehumbert & Widnall(l981) 
for a linear array of identical vortices, Zabusky (1981) for two unequal (translating 
and rotating) vortices, Saffman & Schatzman (1982) for a vortex street (two rows 
of oppositely signed identical vortices), and Dritschel (1985) for 2-8 corotating 
vortices. 

In parallel with the search for new equilibria came the examination of stability. 
Linear stability calculations have been performed ana2yticaZZy for the ellipse by Love 
(1893) and for the annular vortex by Michalke & Timme (1967) (see also Snow 1978 
and Childress 1984). More complicated equilibria have required numerical solutions 
of the eigenvalue problem; Saffman & Schatzman (1982) and later Meiron, Saffman 
& Schatzman (1984) determined the stability of vortex streets for a subset of possible 
equilibria, while Dritschel (1985) found the stability of 2-8 corotating vortices. 
Stability has also been tested by calculation. Some instabilities associated with 
elliptical vortices are presented by Zabusky (1981), and Overman & Zabusky (1982) 
show two corotating vortices ‘merging’ or sliding very close to each other. In  the 
past three years, several analytical nonlinear stability theorems have been proven. 
Nonlinear stability guarantees that a sufficiently small (but finite) disturbance will 
never grow larger than a fixed size (as measured in a certain norm defined below). 
Wan & Pulvirenti (1985) have proven that the circle is stable. Tang (1984) has shown 
that the ellipse is non-linearly stable in the same range of aspect ratios that imply 
linear stability - an interesting result because although stability automatically 
implies linear stability, the reverse is not always true. Marsden (1985) presents an 
excellent review of the recent developments in stability theory. 

From a mathematical standpoint, uniform-vortex evolution represents an infinite- 
dimensional dynamical system with stability properties at most poorly understood 
(Dritschel 1985). Calculations of linear stability are formidable computational 
problems, yet linear stability does not guarantee stability in general. An imposed 
disturbance, taking the form of a finite-amplitude eigenmode of the linear stability 
analysis, may lead to instability even though linear theory predicts stability. Either 
the initial disturbance excites unstable eigenmodes through nonlinear interactions, 
or the disturbance evolves outside the scope of linear theory, independent of the 
disturbances’ amplitude. It is this latter possibility that has motivated recent 
mathematical interest in the nonlinear stability of uniform vortices. The existing 
proofs of (nonlinear) stability bound the disturbance with respect to area but not arc 
length ; specifically the amount of circulation that may cross an iso-vorticity contour 
is bounded for all time (the L, norm) - see Marsden (1985). A ‘stable’ disturbance 
may nonetheless form long wisps of small area, a process not describable by linear 
theory. For more complex equilibria, analytical proofs of stability do not yet exist, 
and the already intricate proofs for the circle and the ellipse point to the need for 
direct numerical calculation. 

The purpose of this paper is to more clearly ascertain the range of behaviours 
associated with evolving vortex configurations of initial states close to rotating 
equilibria. Many calculations of vortex evolution have appeared in the literature, and 
we do not intend to simply add to the list - instead, several particular configurations 
are examined thoroughly in order to understand their nonlinear morphologies. Our 
task is threefold. (i) We discuss the relationship, if any, between linear stability and 
the evolution of finitely perturbed equilibria. The analytical nonlinear stability results 
suggest that finite disturbances can evolve in a way not predicted by linear theory 
(e.g. by ejecting thin strands of vorticity). Also, nonlinear wave-wave interactions 
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can generate linearly unstable disturbances which may then grow according to linear 
theory, at least initially. (ii) We show how the correspondence of certain globally 
conserved quantities (such as circulation, angular momentum and energy) can 
explain the transition of one near-equilibrium to another of radically different 
character, and (iii) how the lack of correspondence between one equilibrium’s 
conserved properties and those of all other equilibria lead to ‘cascading’ or the 
generation of much he-scale vorticity structure. 

This study of nonlinear stability germinated in a recent study of the linear stability 
of configurations of corotating vortices, Dritschel (1985, hereinafter referred to as 
D), and, because the current study depends crucially upon that work, the reader 
should refer to it for background material; many of the details regarding the family 
of corotating vortices - their shapes, linear stability and energetics - may be found 
in that work and will not be reiterated here. The current study extends the linear 
stability analysis of D to finite-amplitude perturbations and confirms the utility of 
energetics in understanding nonlinear evolution. A brief review of energetics appears 
in the next section. In $3 we describe a contour-dynamics numerical algorithm which 
is then used to investigate the nonlinear morphology of certain equilibrium 
configurations: an annular region of vorticity (§4), an elliptical vortex ( § 5 ) ,  and the 
corotating configurations discussed in D (86). These particular configurations are 
studied because of their simplicity, their nonlinear evolutionary relationships, and 
their relevance to geophysical phenomenon (I 7). 

2. Energetic constraints on nonlinear evolution 
Energy and angular-momentum conservation strongly constrain the evolution of 

vortex configurations. Indeed, the proofs of nonlinear stability for the circle and the 
ellipse (Wan & Pulvirenti 1985; Tang 1984) follow directly from these conservation 
relations. It is therefore expected that an examination of the energetic constraints 
will yield important additional information about vortex evolution not already 
contained in the linear disturbance framework. In this way, energy bridges linear and 
nonlinear stability. We derived some constraints in D applicable to arbitrary 
distributions of vorticity, w ( z ,  y). By restricting the analysis to piecewise-constant 
distributions in an inviscid fluid, the conserved quantities, now only finite in number, 
take on especially simple forms: 

the area of each vortex 
the vorticity of each vortex 

the total circulation 

A , , j =  1,2 )..., N ,  
w,, 

f = JJodzdy = Zw,A,,  
i 

the angular momentum 

the centroid 

the ‘ excess ’ energy T,= lim - (u2+v2)dzdy--log - 
h m  EJJ r2 47c C I ) J  

where the lengthscale I = ( J / f  )t and L is the radius of the outer ‘boundary ’ of the 
flow, as we take this radius to infinity. The definition of T, is necessary because the 
actual energy of an unbounded fluid with circulation is infinite. r is listed for 
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convenience even though it depends on some of the other conserved quantities. (See 
the Appendix for r, J and T, in terms of contour integrals.) 

For vorticity distributions with non-zero circulation, the two fundamental con- 
served quantities are the angular momentum and the energy. We can always transform 
coordinates so that Z = y = 0 whereas the u, are trivially conserved. In D, the u, and 
the A, were used to cast the energy and angular momentum into non-dimensional 
terms, E and A-' below. Define 

the energy E = - 

I and the inverse angular momentum A = L, 
=Jrl 

where 7 = j ju2 dxdy = Zu,Z A, is the total enstrophy. For a circular vortex, 

E = A = 1. In the present study, the vorticity distributions are not only piecewise 
constant but also have the same uniform value of the vorticity. In  such a case A 
represents the total dimensionless area of the rotational fluid: A = Z A,/nZ2 and 

0 < A < 1. Such vorticity distributions have the convenient property that E and A 
are directly related. Figure 1 shows E(A)  for the known rotating equilibria. In D 
we used the energy curves of divfferent vortex configurations to make predictions 
about possible transitions between configurations. We show later that figure 1 is 
fundamental to understanding such transitions, and we exemplify this by the 
breakup of an annulus into five corotating vortices ($4), the breakup of an ellipse into 
two vortices ( $ 5 ) ,  and the merger of two vortices into an ellipse ($6). 

5 

I 

3. The contour-dynamics algorithm 
When a two-dimensional, inviscid, incompressible, boundless fluid is assumed to 

consist of regions of constant vorticity, the velocity at any point is known solely in 
terms of the positions of the boundaries of vorticity discontinuity. Specifically, the 
velocity depends on contour integrals around each of the different regions of vorticity 
(vortices). The standard procedure has been to discretize the vortex boundaries (see 
Wu et aZ. 1984 and the references therein). Our approach has been basically the same 
with a slight modification in performing the contour integrals. Between every two 
(nodal) points Xi and X.+, on a given vortex boundary, we interpolate with a local 
cubic in a coordinate system whose x-axis runs parallel to the vector between nodes 
i and i + 1. Let t = X,+, - X, and n = h A t be the local tangent and normal vectors 
respectively. Then, for Xi < X < Xt+,, X(p)  = X , + p t + ~ ( p )  n, where is assumed to 
be the cubic ap+Pp2+ yp3 for 0 < p < 1. a, P, and y are determined by forcing the 
cubic to pass through the four points Xt-,, X,, X,,, and Xi+, (the condition at Xi 
has already been imposed). 

A more accurate method was employed to calculate the velocity field contour 
integral, which avoids direct use of the logarithmic Green's function. Referring to 
equation (2.7) of D, the key is to notice that the velocity field at a point due to vortex 
boundaries located at X, (k = 1, . . . , N), i.e. 

1 N  P 



Nonlinear evolution of rotating confiurations of uniform vorticity 161 

’w 

E 

\ \ ,Corotating vortices 

! 1 I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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0 

FIGURE 1. The energy-area diagram for the rotating equilibria of a single uniform vorticity. The 
corotating vortices, elliptical vortices, annular vortices, and the N-fold symmetric single vortex 
states, V ,  (see Wu, Overman & Zabusky 1984) are shown. 

can be transformed via an integration by parts to 

l N  
u(x)  = - 6.)k (COS6,Sin6)(COSedXk+Sin6dYk), (3.2) 

2 a k - l  kk 
where (cos 0, sin 6) = (x - X,)/lx- Xk(. The numerical advantage is that the integrand 
of (3.2) in non-singular if xk passes through x whereas that of (3.1) is singular. 

Next, the velocity at a given nodal point is calculated from contour integrals 
performed using four-point Gaussian quadrature (Abramowitz & Stegun 1965, p. 
921) between each pair of nodes along the entire boundary of each vortex. Once this 
is done for each nodal point, the system is integrated in time by means of either a 
fourth-order Runga-Kutta or a ‘leap-frog’ scheme. We do not adjust the nodal 
positions for purposes of resolution after the points are laid down at the initial time. 
Such an adjustment scheme could have been useful in several instances, but would 
not have allowed us to continue the calculations much longer than we did (see below). 

All calculations were performed on a Cyber 205 vector processing supercomputer. 
Test calculations were performed to assess the optimal timestep, quadrature formula, 
and spatial resolution, and the results proved insensitive to further adjustments of 
parameters except when regions of high curvature developed or when contour 
perimeters grew unreasonably long. The algorithm was also checked against known 
results such as the rotation rates of ellipses and multiple vortices as well as phase 
speeds of waves on a circular vortex. During the calculations, circulation and angular 
momentum were used as diagnostics to measure accuracy, and significant departures 
from conservation of these quantities were found to correspond to severe contour 
deformations. 
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a 
FIGURE 2. The stability of an annular vortex of unit vorticity. At a = 0, there are two real 
frequencies (solid lines), u = t(m- 1) and u = 4: the first corresponds to the solid circular vortex 
while the second is due to the hole at the vortex centre. The two frequencies join up causing 
instability (dashed lines) until a = 1. 

4. Annular-vortex evolution 
In this section, we examine the behaviour of small perturbations to an annular 

region of vorticity. We begin by reviewing the linear stability of an annular vortex. 
Finite-amplitude eigenmodes from the linear stability analysis are then added to this 
annulus, and the system is integrated in time for a variety of basic-states and 
disturbances. Also, the effect of more general disturbances is discussed. 

The linear stability of the annular vortex was first determined by Michalke & 
Timme (1967). For continuity, we shall present the principal results. The annular 
vortex is defined to be a ring of unit vorticity lying radially between a and 1. The 
eigenfunctions are sinusoidal boundary waves of the form Re [exp (im(8-p2) - i d ) ]  
on the outer boundary and urn-' Re [1/(1+2g) exp (im(8-pl)-id)] on the inner 
boundary with 0 < 8 < 2x. Here, m is the azimuthal wavenumber while the phase 
difference A/.? = p2 -PI = tan-' [Im (2a)/Re (1 + 241. The eigenvalue a is given by 

v(m, a) = *( 1 - a2) + f[( 1 -*( 1 -az))2-a2m 1;. (4.1 1 
Figure 2 shows cr versus a for m = 1 to 6. The vortex is unstable if a > f with the 
first instability being 3-fold symmetric. A 4-fold instability is possible for yet thinner 
annuli, a > ( 4 2  - l)i, and higher values of m become unstable as a approaches unity, 

Two series of calculations are described. Each calculation begins with 100 
uniformly distributed nodes on each boundary. Time is measured relative to the 
quantity T = 47cJ/T2 = (1 +a2)/(  1 -a2). In the first series of calculations, the initial 
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a 

0.2,0.4 
0.5 
0.5 
0.6 
0.6 
0.7 
0.7 
0.7 

m 

3,4,5 
2,4 
35 
2, 44, 5,6 
3 
5,6  
3,4 
26  

Basic-state type 

Stable 
Marginal 
Marginal 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

Disturbance type 

Neutral 
Neutral 
Marginal 
Neutral 
Stable, unstable 
Neutral 
Stable, unstable 
Neutral 

Nonlinear stability 

Stable 
Stable 
Unstable 
Stable 
Unstable 
Stable 
Unstable 
Unstable 

TABLE 1. A summary of the calculations performed in series 1. For neutral disturbances, both 
values of Q in (4.1) were considered. All calculations were done using perturbation amplitudes E 

of 0.01, 0.02 and 0.05. Superscripts denote figure numbers 

0 4.5 

18.0 22.5 27.0 

FIQURE 3. Breakup into multiple vortices of a marginally stable vortex (a = 0.5) due to a 
superimposed marginal disturbance (m = 3). E = 0.02. 

condition consists of an annulus (defined by the parameter a) plus an eigenmode from 
the linear stability analysis (defined by m) multiplied by a small number e. We 
consider three basic states: (i) total linear stability (a < 4); (ii) marginal stability 
(a = 4) ; and (iii) linear instability (a > 4). Furthermore, we consider four disturbance 
types that apply to each m individually: (i) neutral (the m-fold disturbance is neutral, 
Im(a )  = 0), (ii)marginal(form = 3,amustbe4whileform = 4,amustbe(2/2-1)4); 
(iii) unstable (Im (a) > 0) and (iv) stable (Im (a) < 0). 

The three basic states were tested for stability by imposing various kinds of 
disturbances with amplitudes B of 0.01, 0.02 and 0.05 (see table 1). When the basic 
state is linearly stable, only neutral disturbances are possible, and these are always 
(nonlinearly) stable (in the area norm, not arc length). But, for a marginal basic state 
(a = t),  a marginal disturbance (m = 3) does lead to instability (figure 3). Thus the 
instabilities associated with annular vortices do cause the ring of vorticity to ‘break ’ 
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0 7 14 21 

FIQURE 4. Nonlinear vacillation of a neutral mode (m = 4) on a linearly unstable vortex (a = 0.6). 
The amplitude of the initial disturbance is E = 0.05. 

0 0.68 1.37 

2.05 2.74 3.42 

FIQURE 5. Instability of a neutral m = 2 disturbance on an unstable basic state. 
a = 0.7 and E = 0.01. 

into multiple vortices - the ring does not actually break because the fluid is inviscid. 
In any case, it  is clear that several distinct centres of vorticity develop. If the basic 
state is unstable (a > t ) ,  but the imposed disturbance is neutral, as when a = 0.6 
and m = 4 (figure 4), the initial condition regularly repeats itself except for a phase 
shift. We term this near-recurrent motion vacillation, and this behaviour is found to 
be typical for neutral disturbances to an unstable vortex, with one exception. When 
the vortex is sufficiently thin to excite 4-fold linear instabilities, 2-fold disturbances 
lead to instability via wave-wave interactions (figure 5 ) .  The reverse is not true. For 
instance, a neutral 6-fold disturbance cannot destabilize a vortex that is at most 
linearly unstable to m = 3, 4 and 5 - higher-m disturbances cannot destabilize 
lower-m disturbances. Finally, we found that all linearly stable disturbances never- 
theless lead to the breakup of the annulus. Apparently, a stable disturbance (with 
eigenvalue u, say) excites its unstable conjugate (with eigenvalue c*, where * denotes 
complex-conjugation). 

In a second series of calculations (see table 2), we simply added 0.1 cos m(O-/3,) 
to each boundary of the annulus and considered several phase differences. Because 
this is not an eigenmode from the linear stability analysis, many eigenmodes are 
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U 

0.4 
0.4 
0.4 
0.5 
0.5 
0.5 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 

m2 
5 
5 
4 
3 
2 
4 
3 
2 
3 
3 
4 
4 
5 
1 
1 
2 
2 
2 
3 
2 
4 
4 
4 
5 
5 

m1 
5 
4 
5 
3 
2 
4 
3 
3 
2 
4 
3 
4 
5 
1 
2 
1 
2 
3 
2 
4 
2 
4 
5 
4 
5 

m, B 
06,90, 180 
0 
0 
0, 90,180 
0,m 
0,45 
0,90, 180 
0 
0 
0 
0 
0,45 
0,180 
0 
0," 
0,m 
0, 9os 
0 
0 
0 
0 
0,45O 
0 
0 
0, 18010 

Basic-state type 

Stable 
Stable 
Stable 
Marginal 
Marginal 
Marginal 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

Nonlinear evolution 

Steep, sharp waves 
Steep, sharp waves 
Steep, sharp waves 
Three vortex centres 
Vacillation 
Vacillation 
Three vortex centres 
Complex instability 
Complex instability 
Complex instability 
Complex instability 
Vacillation 
Vacillation 
Complex instability 
Complex instability 
Complex instability 
Complex instability 
Complex instability 
Complex instability 
4 Unequal vortices 
4 Unequal vortices 
4 Vortices 
Complex instability 
Complex instability 
5 Vortices 

TABLE 2. A summary of the calculations performed in series 2. The inner boundary disturbance 
is 0.1 cosm,(O-B) and that of the outer boundary is 0.1 cosm,O. Superscripts denote figure 
numbers 

0 

I 
1.2 3.6 
I 

FIGURE 6. Nonlinear stability in the form of steep, small waves. u = 0.4, m = 5, and E = 0.1. 

present. A second form of nonlinear stability (other than vacillation), which appears 
to be restricted to linearly stable basic states, is demonstrated in figure 6 (a  = 0.4, 
m = 5 ) .  The boundary waves become steep and sharp but never carry away a 
significant amount of the circulation. In  other words, the area of the perturbation is 
bounded by an amount related to the initial pertubation area, which is in fact the 
definition of stability used by Wan & Pulvirenti (1983) and others to prove nonlinear 
stability analytically. Deem & Zabusky (1978a, b )  first observed sharpening (and 
desharpening) waves near the 'corners' of a singly connected 3-fold symmetric vortex 
state, see also figure 7 of Zabusky (1981). Vacillation occurs only if the disturbance 
is free from an m = 3 component and even disturbances are linearly stable 
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6 r = o  6r = 0.0007 
0 6J = 0 3 6J = 0.001 1 

6r= 0.0024 6f = 0.0027 
6 6J = 0.0036 9 6 J =  0.0061 

FIGURE 7. 2-1 disturbance breakup of an unstable vortex. a = 0.7 and E = 0.1. 6r and 6L track 
the fractional changes in circulation and angular momentum with time. 

6r = 0.0066 
3 6J = 0.0068 

FIGURE 8. 2-2 disturbance breakup and subsequent merger of an unstable vortex. 
a = 0.7 and e = 0.1. 

(a  < ( 4 2 -  1)t). Other combinations of basic states and disturbances lead to major 
alternations of the initial configuration. 

Figure 7 starts with an rn = 2 disturbance on the inner boundary and an m = 1 
disturbance on the outer boundary - for reference we call this a 2-1 disturbance. In  
this figure, we track the relative change in circulation, SI', and angular momentum, 
SJ, as a measure of accuracy. These quantities change by less than 1 % during the 
calculation. As a result of the symmetry differences between the inner- and 
outer-boundary disturbances, the evolution is totally void of symmetry. In contrast 
(figure 8), a 2-2 disturbance evolves into two elongated vortices which spiral toward 
the origin. Owing to the generation of long strips of vorticity, the resolution rapidly 
deteriorates. But, a 2 4  disturbance evolves into four unequal-sized (but partly 
symmetric) vortices with little ejection of vorticity into the fluid surrounding the 
vortices (not shown). Two additional examples that evolve relatively cleanly are 
shown in figures 9 and 10. In  figure 9 four skewed vortices develop (see also the 
point-vortex cloud calculation of Christiansen 1973) but the five vortices in figure 
10 are nearly symmetric, and, in fact look much like the limiting member of the 
equilibrium family of five vortices (figure 2d of D). This can be understood by 
considering figure 1 : a transition is almost possible between the limiting member of 
the family of five corotating vortices and an a = 0.7 annular vortex (at A = 0.38). 
For fewer than five vortices, clean transitions between annuli and eymrnetric 
corotating vortices are not possible because of their energetic dissimilarities. The 
results of figure 10 underscore the utility of energetics in understanding transitions. 
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0 1.2 2.4 3.6 

0 

RQURE 9. 4-4 disturbance. a = 0.7 and E = 0.1. 

0.8 1.6 

I 
2.4 

FIQTJRE 10. 5-5 neutral disturbance superimposed on an unstable vortex, a = 0.7. The amplitude 
is large enough (8 = 0.1) to form multiple vortices. 

We have determined that a linearly stable (a < t )  annular vortex is stable to 
sufficiently small disturbances. If the basic state is linearly unstable to both even and 
odd disturbances, only neutral eigenmodes with nz 9 2 are stable; m = 2 can generate 
the m = 4 unstable eigenmode (figure 4). For thicker annuli in which only m = 3 is 
unstable, it takes a disturbance with a 3-fold component to cause instability. 
Linearly marginal, unstable and stable disturbances always lead to instability. The 
stable modes nonlinearly generate their unstable counterparts. As for the character 
of the evolution, nonlinearly stable disturbances either vacillate or form sharp, steep 
boundary waves, whereas unstable disturbances tend to break apart the ring of 
vorticity . 

5. Elliptical-vortex evolution 
Love (1893) determined analytically the linear stability of the ellipse. He discovered 

that instability may occur if the major-to-minor axis length ratio exceeds 3 to 1. We 
first presentv& review of Love’s main results and then examine the nonlinear 
behaviour of slightly perturbed ellipses?, We intend to relate nonlinear stability to 
linear stability, but, additionally, we shall discuss the interesting connection between 
ellipses and two corotating vortices whose energy curves intersect twice. This leads 
us to propose a direct relationship between energetics and nonlinear evolution. 

The elliptical vortex is defined as a vortex with semi-minor axis b, semi-major axis 
a, and unit vorticity. I ts  boundary shape is given parametrically by xo = a COB 8 and 

t Zabusky (1981) also presents a number of relevant calculations. 
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1 .O 

0.75 

U 

0.5 

0.25 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FIQURE 1 1 .  The stability of an elliptical vortex of unit vorticity after Love (1893). Stability of a 
given azimuthal mode occurs from b/a  = 1 until the wave frequency (solid lines) goes to zero. Then, 
the frequency remains zero while the growth rate (dashed lines) becomes non-zero until b/a = 0. 

bla 

yo = b sine, 0 < 0 < 2n. For a given ‘azimuthal’ wavenumber m the eigenfunction 
has the structure s(-bcos8, asind) cosm(6-p) 

(AX, AY) = bs toss 6 + sine 8 (5.1) 

The phase p is zero as long as the eigenvalue, u = & (EF)t,  is real; here 
E = ma-f( l+y) ,  F = mO-!j(l-y), y = [(a-b)/(a+b)lm,andQ = ab/(a+b)2isthe 
rotation rate of the unperturbed ellipse. Otherwise, tan rnp = +_ ( - E/F) t  for the 
unstable and stable modes respectively. Figure 11 shows positive a(b/a;  m) for m = 3 
to 6 (we do not show u form = 1 or 2 because u = f D and 0 respectively ; also, p = f ;t. 
when m = 2). As b/a+O, some algebra shows that the wavenumber of maximum 
instability is given by m = z a/b where z A 0.398406 (the solution to e-4x - 22+ 1 = 0) 
and the maximum growth rate is given by u = ( fx - z2 )4  A 0.201 185. This behaviour 
is already evident in figure 11 for relatively low values of m. 

The nonlinear stability of the ellipse is considered next. Tang (1984) has recently 
proven analytically that the ellipse is stable whenever + < b/a < 3 (stable to disturb- 
ances whose amplitude goes to zero a t  the stability boundaries). Our numerical 
results are meant to confirm this result and to illustrate the range of behaviours 
associated with unstable ellipses. The following calculations begin with an ellipse plus 
eigenfunctions from the linear stability analysis. In  each case, for a given perturbation 
symmetry m, we fix the phase p = 0. This is a single eigenfunction of the linear 
stability analysis whenever the basic state is linearly stable to m-fold disturbances. 
But, if the basic state is linearly unstable, the perturbation is the superposition of 
the stable and unstable eigenmodes. When m = 2, such a superposition is not possible 
because cos m(8-p) = &sin 28 for /3 = +in. To first order in disturbance amplitude, 
these eigenmodes preserve the elliptical shape by slightly tilting the vortex from its 
alignment in the (2, y)-plane (hence the zero eigenvalue). A perturbation with * k i n  cannot be expressed in terms of the eigenmodes of the linear stability 
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m 

2 , 3 , 4  
2 , 4  
313a 

2 , 4  
3 
5 
2 
3 , 4  
5 ,6  
212a 
312b 412c 
5lZd: 6 ,7  
p 4 a  

Basic-state type 

Stable 
Marginal 
Marginal 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

Disturbance type 

Neutral 
Neutral 
Marginal 
Neutral 
Unstable 
Neutral 
Neutral 
Unstable 
Neutral 
Neutral 
Unstable 
Neutral 
Neutral 

Nonlinear stability 

Stable 
Stable 
Unstable 
Stable 
Unstable 
Unstable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

TABLE 3. A summary of the elliptical vortex calculations. The disturbance is of the form of an 
eigenfunction with zero phase, except in the case when m = 2 (see text for discussion). The initial 
perturbation amplitude is E = 0.01. Superscripts denotes figure numbers 

analysis because such a perturbation would violate the conservation of area, angular 
momentum and energy, quantities that are conserved to first order in disturbance 
amplitude by the linear eigenmodes. Nevertheless, we choose to perturb the ellipse 
with an m = 2, p = 0 disturbance as in (5.1). Finally, the amplitude E: = 0.01 for all 
cases, and each calculation begins with 400 uniformly distributed (in 0)  nodes. 

We illustrate just a few calculations, but the complete list is given in table 3. 
Consider the evolution of a perturbed 6: 1 ellipse (b/a = t ) .  The basic state is linearly 
unstable to m = 3 and 4. In  figure 12(a), a 2-fold symmetric disturbance rips the 
ellipse into two pieces, leaving a thin thread of vorticity connecting the two vortex 
centres. The two centres of vorticity so formed fall into the linearly stable regime 
of the analysis of D and, as is shown in the following section, linearly stable 
configurations are also nonlinearly stable. (Zabusky et al. 1979 indeed show two 
stable ‘pulsating’ vortices). Figure 12 (b, c) shows the nonlinear instability of the 
linearly unstable m = 3 and m = 4 disturbances. In  figure 12, the tail of vorticity that 
forms, if taken in isolation, would rapidly roll-up by the Kelvin-Helmholtz instability 
mechanism; however, the stretching effect on the tail by the central vortex 
counteracts this mechanism (see Saffman & Baker 1979 and Moore & Griffith-Jones 
1974 for a discussion of the processes involved). Nevertheless, in this figure, the effect 
of the central vortex may not be sufficient to prevent an eventual catastrophic roll-up 
of the tail (see figure 8 of Zabusky 1981). In contrast, figure 12 (c) shows a case (m = 4) 
in which the tails may be thinned rapidly enough to prevent eventual roll-up. Note 
the differences between figures 12(a) and ( c ) ;  the m = 2 disturbance rips the vortex 
apart, whereas the m = 4 disturbance leaves the central vortex intact at the expense 
of ejecting thin streamers of vorticity. In figure 12(d), an ellipse perturbed with a 
linearly neutral 5-fold disturbance destabilizes by first ejecting a thin streamer of 
vorticity and then undergoing a broad, low-wavenumber distortion. 6- and 7-fold 
perturbations lead to similar evolutionary behaviour (not shown). We find that 
neutral disturbances with m + 2 excite the unstable eigenmodes through the distinctly 
nonlinear process of ejecting thin filaments, an irreversible process indicative of 
infinite-dimensional dynamical systems (water waves are another example - see 
Benjamin & Olver 1982). 

When the basic-state ellipse is not too eccentric, so that it is linearly stable to 
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(4 

0 0.21 0.42 0.63 0.70 0.77 

0 0.21 0.42 0.63 

0 0.21 0.42 0.49 

0 0.07 0.14 0.21 0.28 

FIQURE 12. The stability of a 6: 1 ellipse to various linear disturbances: (a) m = 2 (neutral), 
( b )  m = 3 (unstable), (c) m = 4 (unstable), (d) m = 5 (neutral). 

m = 4 disturbances, perturbations with even symmetry simply vacillate (see table 3). 
The even symmetry of the ellipse coupled with that of the disturbance can never 
generate the odd m = 3 linearly unstable eigenmode. When both m = 3 and 4 are 
linearly unstable, all disturbances (except as noted below) are nonlinearly unstable. 
Low-m disturbances (m < 4) create large-scale changes of the initial condition. 
High-m disturbances, however, first cause the ejection of thin streamers of vorticity 
before major structural alterations develop. 2-fold disturbances are only unstable a t  
yet higher eccentricities. 

The following example shows the accuracy and limitations of the numerical 
algorithm. The rn = 3 marginal disturbance is nonlinearly unstable on a marginal 
ellipse (figure 13a). In  contrast to the double ‘tail’ observed by Zabusky (1981) on 
a 3.5: 1 ellipse, the 3: 1 ellipse exhibits only a single tail. Figure 13 (a) shows an 
enlarged version of the last frame of figure 13 (a) in which the effects of poor resolution 
can be seen. Fig 13 (c) is the same calculation but with 16 instead of a 4 Gaussian points 
between nodes, and while the numerical instability is not apparent, it reappears a few 
timesteps later. The instability is related to the inaccurate calculation of the velocity 
close to a contour. 

We turn next to the relationship that exists between the elliptical vortex and two 
corotating vortices. In  D, we found that there are two ellipses, b/a  = 0.1654 and 
0.1655, and two corresponding members of the family of corotating vortices, 
a, = 0.087 and 0.039, whose conserved properties (circulation, angular momentum, 
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0 3.05 3.15 3.25 

FIQURE 13. (a) 3:  1 marginally stable ellipse with a superimposed marginal disturbance (m = 3). 
The first three rotations of the vortex are not shown, but the initial condition is displayed in the 
first frame. ( b )  Enlarged view of the last frame in (a) showing numerical instability. (c) As in ( b )  
but with higher resolution (16 Gaussian points instead of 4). 
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centroid, energy, total area and vorticity) are identical. We postulated that a 
transition is possible between these conjugate states. To test this hypothesis, we 
calculated the evolution of a b/a = 0.1655 ellipse initially perturbed with a hybrid 
m = 2 disturbance: instead of using ~3 = for the phase, we used B = - 5 O ,  0 and 
5". Since the three cases evolved similarly, we show only the case for /3 = 0. Figure 
14(a) shows the ellipse dividing into two vortices that are very close to the a, = 0.087 
steadily corotating configuration. Conversely, using a basic state consisting of two 
corotating vortices plus a linearly unstable eigenmode (as discussed in the next 
section), figure 14(b) displays the formation of a b/a = 0.1655 ellipse. Contour 
'surgery' was performed at t = 0.7 in order to continue the calculation - the error 
in doing this is indicated in the relative changes in circulation and angular 
momentum, of about 0.3%. Soon after, the imprecise surgery caused the develop- 
ment of small cusps and the calculation had to be discontinued, but we do see the 
initial stages of an ellipse (compare by looking backwards through figure 14a). 

It is rather surprising that one slightly perturbed unstable equilibrium can evolve 
into another unstable equilibrium, given the infinite number of possible evolutionary 
paths. We conjecture that many evolutionary paths are bundled together owing to 
the low numbers of unstable linear eigenmodes associated with the two equilibria. 
For the ellipse, a single even-fold symmetric eigenmode is unstable whereas two 
corotating vortices are unstable to a single symmetric instability. 

The example just presented points to the great practical value of using energetic 
constraints to understand transitions between different vortex configurations. We 
propose that the gross evolution of interacting uniform vortices (of the same uniform 
value of the vorticity) can be predicted by considering (i) the distribution's location 
on the energy diagram (figure 1)  relative to the energy curves of neighbouring 
equilibrium distributions, and (ii) the symmetry of the distribution in relation to the 
symmetries of neighbouring (equilibrium) distributions. The ellipse-two-vortex 
transition occurs so cleanly because of both the proximity of the two equilibria on 
the energy diagram (see figure 15), and the common 2-fold symmetry of the ellipse, 
the two vortices and the imposed disturbance. In  contrast, figures 12 (bd) show how 
symmetry differences between the disturbance and the basic state radically alter 
predictions based purely upon energetic similarity. We shall return to this proposal 
in the conclusions after we discuss the results for two, three and four corotating 
vortices in the next section. 

To conclude, we have found that the ellipse is (nonlinearly) stable only if the 
basic-state ellipse is linearly stable. This agrees with the recent analytical results of 
Tang (1984). Almost all disturbances to a linearly unstable (or marginal) ellipse have 
been found to be unstable, the exception being that even-fold symmetry perturbations 
vacillate when the basic state is only linearly unstable to m = 3. When the ellipse 
is linearly unstable to some m > 3, neutral disturbances (with m =i= 2) first develop 
into thin strands of vorticity, followed by the excitation and rapid nonlinear growth 
of the linearly unstable eigenmodes (e.g. figure 124 .  

6. Corotating vortex evolution 
Finally, we consider the nonlinear morphology of the equilibria whose form and 

linear stability were determined in D. For practical reasons, we limit our attention 
to two, three and four vortices. Each calculation below begins with a slightly 
perturbed equilibrium of corotating vortices (see table 4). The perturbations consist 
of eigenfunctions of the linear stability analysis multiplied by a small number E ;  the 
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N a0 

2 0.10 
0.10 
0.085 
0.08 
0.0814* 
0.08 
0.075 
0.075 
0.075 
0.04 

3 0.23 
0.23 
0.23 
0.215 
0.215 
0.215 
0.215 
0.20 
0.20 
0.20 
0.20 
0.2016 
0.20 

4 0.38 
0.38 
0.38 
0.38 
0.38 
0.37 
0.37 
0.37 
0.37 
0.37 
0.37 
0.37 
0.32l' 
0.29 
0.28 
0.28 
0.28 
0.28 
0.28 
0.28 
0.28 
0.28 
0.26 
0.24 
0.22 

1 

1 
2 
1 
1 
1 
2 
1 
1 
2 
1 

1 
2 
3 
1 
2 
3 
3 
1 
1 
1 
2 
3 
3 

1 
2 
2 
3 
4 
1 
2 
2 
3 
3 
4 
4 
3 
1 
1 
1 
1 
2 
3 
3 
4 
4 
1 
4 
4 

m Basic-state type 

Stable 
Stable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

Stable 
Stable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

Stable 
Stable 
Stable 
Stable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
U n s t a b 1 e 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

Disturbance type 

Neutral 
Neutral 
Neutral 
Neutral 
Stable and unstable 
Neutral 
Neutral 
Stable and unstable 
Neutral 
Unstable 

Neutral 
Neutral 
Neutral 
Neutral 
Neutral 
Stable and unstable 
Neutral 
Neutral 
Stable and unstable 
Neutral 
Neutral 
Stable and unstable 
Neutral 

Neutral 
Neutral 
Neutral 
Neutral 
Neutral 
Neutral 
Neutral 
Neutral 
Stable and unstable 
Neutral 
Stable and unstable 
Neutral 
Stable and unstable 
Neutral 
Neutral 
Stable and unstable 
Neutral 
Neutral 
Stable and unstable 
Neutral 
Stable and unstable 
Neutral 
Stable and unstable 
Stable and unstable 
Stable and unstable 

Nonlinear stability 

Stable 
Stable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

Stable 
Stable 
Stable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Stable 
Unstable 
Unstable 
Unstable 

Stable 
Unstable 
Stable 
Stable 
Unstable 
Stable 
Unstable 
Stable 
Unstable 
Stable 
Unstable 
Unstable 
Unstable 
Stable 
Unstable 
Unstable 
Stable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

TABLE 4. Summary of the corotating vortex calculations. N refers to the number of vortices, a, 
describes the shape of the basic state, and 1 and m refer to the linear eigenmode. 1 = 1 implies that 
the disturbance is the same on all the vortices (symmetric) while other values of 1 imply various 
kinds of asymmetric disturbances. m is similar to the wavenumber m used for the ellipse and the 
annular vortex. See D for details. The initial perturbation amplitude is E = 0.01 except for a few 
cams mentioned in the text. Superscripts denote figure numbers 
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1.840 

1.838 

1.836 

1.834 

1.832 

1.830 

1.828 

1.826 

1.824 

1.822 

1.820 

E 

= 0.087. b/a  = 0.1655 

0.318 0.319 0.320 0.321 0.322 0.323 0.324 0.325 
A 

FIGURE 15. Updated energy diagram for the two-vortex family and the ellipses. The two crowing 
points are where the ellipse is identical, except topologically, with the two vortices. 

maximum departure of the boundary from its equilibrium position is E .  In  table 4, 
N is the number of vortices, a, is the minimum distance, in equilibrium, between the 
origin and any vortex (unity is the distance to the outermost edge of any vortex), 1 
gives the symmetry of the disturbance, and m indicates the origin of the eigenmode 
at a, = 1 (for further details, see D, p. 109, $7.1). The eigenmode on the lcth vortex 
has the form Re [wZm exp (2xi( l -  l ) (k-  l)/N)] where wZm is a function ofposition along 
the equilibrium boundary. An 1 = 1 eigenmode disturbs each vortex identically ; m 
corresponds roughly to  azimuthal wavenumber - it  is similar to the m used in the 
previous two sections. To reduce the amount of computation required, only disturb- 
ances with non-negative phase speeds are considered. 144 points are used to discretize 
each vortex’s boundary, and 6 = 0.01 except in a few cases discussed below. All figures 
give the time relative to the rotation period of the equilibrium configuration. 

6.1. Two vortices 
We first test the linear stability results by checking the location of the stability 
boundary. We are implicitly assuming that the nonlinear and linear stability 
boundaries coincide, just aa they have for the ellipse and the annular vortex. The 
linear analysis yields a, = 0.083 for the stability boundary. From table 4, the four 
most fundamental eigenmodes, (1, m)  = (symmetry, azimuthal wavenumber) = (1, l ) ,  
(1,2), (2 , l )  and (2,2) at a, = 0.1 with E = 0.01 remain small through eight rotation 
periods, the duration of the calculations. And, as a more stringent test, the a, = 0.085 
configuration perturbed with a (1,2) eigenmode of amplitude E = 0.0015 resists 
instability through ten rotation periods. On the other hand, an a, = 0.08 configuration 
is unstable to the (1,2) eigenmode of amplitude E = 0.0015 (the 6 = 0.01 case is 
shown in figure 14b).  Thus, the worst possible estimate of the stability boundary, is 
a, = 0.0825_+0.004. 
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6 f = O  
0 6 J = O  

0 
O0 

6 f  = O.OOO8 
1.3 6J = O.OOO5 

6 f = O  6 f = O  6r = o.Oo01 

6 f  = 0.0037 
1.4 6J = 0.0030 

FIQURE 16. The evolution of an asymmetrically perturbed three-vortex state. B = 0.02, a, = 0.2. 

Next, we examine the behaviour of perturbations to a linearly unstable configura- 
tion. The ( 1 , l )  eigenmode at a, = 0.08 with E = 0.01, despite its linear neutrality, 
excites the (1,2) mode and also results in vortex ‘ merger ’, very much like that shown 
in figure 14(b). The ( 1 , l )  mode for any N and a, represents a rotation without 
distortion of the entire configuration to first order in E ; second-order effects account 
for the instability. Disturbances with I = 2 also excite the symmetric disturbance 
and, in all cases, the nonlinear evolution tends towards the formation of a near 6: 1 
ellipse. Very little formation of small scales occurs during the merger as a consequence 
of the energetic similarities between the two vortices and the ellipse (see figure 15). 

6.2. Three vortices 
The linear analysis indicates that three vortices destabilize first to an asymmetric 
eigenmode (3,1+2) at a, = 0.223. The notation ‘ 1  + 2 ’  means that the instability 
derives from the coalescence of the ( 3 , l )  and (3,2) eigenmodes. At  a, = 0.206, a 
second instability arises, this time symmetric, as a result of the (1,2) mode coalescing 
with its conjugate ; for simplicity, we call this combined mode a (1,2) mode. To test 
the stability boundaries, we calculated the evolution of the nine most fundamental 
neutral modes at a, = 0.23 (see table 4). In  all cases, the disturbances remained 
stable. At  a, = 0.215, all but the I = 1 symmetry modes resulted in instability. The 
neutral asymmetric disturbances (I = 2) can apparently generate the unstable 
eigenmode (3,1+ 2). At a, = 0.2, all disturbances except for (1,3) result in instability 
because both symmetric and asymmetric eigenmodes are unstable. The (1,3) disturb- 
ance escapes instability, we suspect, because large-m symmetric modes cannot 
generate the low-m (1,2), unstable eigenmode. Finally, our calculations confirm the 
locations of the marginal stability boundaries found in D. 

The unstable disturbances evolve with an appreciable degree of complexity. Figure 
16 shows the evolution of the asymmetric eigenmode a t  a, = 0.2, with E = 0.02. The 
three vortices collapse into an annular-like region while ejecting broad streamers of 
vorticity. These streamers will probably wrap up around the inner annular region, 
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6 r = o  
6 J =  0 

sr=o 
6 J =  0 

6r=o 
6 J = O  

6r = 0.0001 
6J = 0.O001 

177 

sr = 0.0003 sr = 0.0039 

FIGURE 17. The evolution of an antisymmetrically perturbed four-vortex state. a, = 0.32. 

and after a long time, the streamers will be very long and thin but carry a substantial 
fraction of the total circulation. One cannot be sure that the streamers of vorticity 
will forever thin and lengthen; since a significant part of the circulation is contained 
within the streamers, the long-time evolution may depend critically upon the 
vorticity outside the central vortex. The second instability for three vortices is 
symmetric and becomes the dominant instability for larger vortices. The collapse 
of the configuration proceeds, albeit symmetrically, much as in figure 16. Thus for 
three vortices, the merger process involves the formation of a central vortex and the 
ejection of substantial amounts of vorticity. 

6.3. Four vortices 
The linear analysis for four vortices predicts an exceedingly complex stability 
diagram containing a host of symmetric, antisymmetric and asymmetric instabilities. 
Only the first few stability boundaries were thoroughly checked, but the nature of 
the instabilities associated with the other boundaries was determined. Four vortices 
first destabilize to a ( 3 , l  + 2) antisymmetric mode a t  a, = 0.373 (the perturbation 
alternates in sign going from one vortex to the next), then to an asymmetric (4,l  + 2) 
mode at a, = 0.371, and then to a symmetric (1,2) mode at a, = 0.283. The 
asymmetric mode subsequently disappears at a, = 0,268, and two additional asym- 
metric instabilities occur for yet smaller a, (larger vortices). Direct calculation shows 
that the I = 1 and 3 disturbances and the (2,2) disturbance are stable at a, = 0.38. 
Most of the asymmetric disturbances are unstable, probably owing to the close 
proximity of the neutral stability boundary. At a, = 0.37, the antisymmetric 
unstable eigenmode (3,1+ 2) becomes unstable, but otherwise we find the same 
stability results as with a, = 0.38. Just before the symmetric marginal stability 
boundary (a, = 0.283), the symmetric (1,2) disturbance at a, = 0.29 is stable. But, 
at a, = 0.28, the (1,2) disturbance becomes unstable, in agreement with our linear 
stability results. For a, = 0.28, all other disturbances, with the exception of (1,3), 
are now unstable. Recall the similar results for three vortices: large-m symmetric 
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disturbances are stable. In  summary, we again find support for the linear analysis 
of D. 

The evolution of four unstable vortices is discussed next. The antisymmetric 
disturbance is shown in figure 17. First, two sets of two vortices pair and then these 
two sets pair leaving small and large strands of vorticity dangling from the vortex 
conglomerate. Four asymmetrically perturbed vortices proceed through successive 
'mergers ' toward a single large vortex structure surrounded by broad streamers of 
vorticity. The symmetric instability follows a similar evolution but leaves a large 
hole of irrotational fluid at the centre (not shown). 

To conclude, we find nonlinear stability whenever the configurations are linearly 
stable. This suggests that there may be a theorem of nonlinear stability like those 
derived analytically for a circular vortex and an elliptical vortex. Regarding the fate 
of eigenmode disturbances to linearly unstable equilibria, we find that large-m 
symmetric neutral disturbances are the only ones that resist instability. The other 
disturbances eventually cause the collapse of the vortices into a central annular 
region surrounded by substantial streamers of vorticity except for the clean merger 
of two vortices into a near 6:  1 ellipse. This merger was found to be related to the 
close proximity of two vortices to the ellipse on the energy diagram. Three and four 
vortices do not merge cleanly, and we believe that this is a consequence of their 
energy curves being distant from the energy curves of other equilibria of compatible 
symmetry. Consider the ' V-states' of Wu et al. (1984). These equilibria are N-fold 
symmetric single vortex configurations with N = 2 corresponding to the ellipse. The 
energy curves for N = 3 and 4 are plotted in figure 1, and one can see that transitions 
are not possible between corotating vortices and ' V-states' when N > 2. Of course, 
this does not rule out transitions to more complex equilibria that are yet to be found. 

7. Discussion and conclusions 
Through direct calculation we have presented the nonlinear morphology of 

rotating uniform distributions of vorticity. The study covered the evolution and 
stability of annular, elliptical and corotating vortices. In general, we have found that 
small disturbances to linearly stable configurations are always stable. For a linearly 
marginal or unstable configuration, some specific neutral eigenmodes of the correct 
symmetry can resist instability, depending upon the symmetry of the basic state and 
upon the symmetry of the unstable eigenmode(s), but most disturbances, and more 
importantly from the practical standpoint, random disturbances, lead to instability. 
Thus, one general conclusion is that similar nonlinear stability results exist for a 
variety of equilibria, leading us to propose that all rotating equilibria are nonlinearly 
stable in the same parameter range that ensures linear stability. 

The character of nonlinear stability has been shown to differ appreciably from that 
of linear stability. In  fact, the only correspondence between them occurs for the 
initial evolution of linearly unstable eigenmodes. The difference between the two 
forms of stability are important. First, finite-amplitude linearly neutral or stable 
disturbances can excite linearly unstable eigenmodes through ' wave-wave ' coupling 
and effect which is second order in disturbance amplitude. Secondly, the initial 
growth of an instability cannot always be described by linear theory : a thin filament 
can rapidly grow out of a vortex boundary (such as in figure 12d), and the 
perturbation caused by the filament can subsequently excite unstable modes. 

We have observed a strong tendency for unstable configurations to evolve ' close ' 
to other known equilibrium configurations, or near ones that we suspect may be in 
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equilibrium. This tendency appears to be related to the global properties of the flow 
(energetics, symmetry) and not, except in detail, to the initial conditions. Given a 
disturbance of symmetry compatible with that of the basic state, the evolution tends 
toward other equilibria of compatible symmetry with energetic properties that are 
most similar. We have presented several examples of this : the ellipse-two-vortex 
transition (figure 14a, b) and the annulus-five-vortex transition (figure 10). On the 
other hand, if the initial condition is energetically distant from other equilibria of 
compatible symmetry, a substantial fraction of the circulation is lost to thin strands 
of vorticity. In  numerous examples these thin strands rapidly thinned so as to lose 
their dynamical significance (but note the formation of the satellite vortex in figure 
12b). The strands, however, may not always or even often be neglected. Melander, 
McWilliams & Zabusky (1985) show that the strands cause initially elliptical 
(non-uniform) vortices to become more circular in time. Recent unpublished calcula- 
tions by the author show similar results for uniform regions of vorticity. Whether 
or not significant cascading of small scales occurs during the evolution, the (statistic- 
ally) final state becomes bound to one particular equilibrium. And, although the 
fluid may never depart significantly from the equilibrium, small irreversible wave- 
breaking events can still occur, as was demonstrated in figure 7 of Zabusky (1981) 
and figure 6 of the present study. 

The results of this study may be applicable to various geophysical phenomena. 
Many observations of tornadoes have shown the breakup of a vortex into several 
smaller but significantly more intense vortices (Fujita 1970; Agee et al. 1977). Often 
two or three vortices develop, but up to six have been observed. Among the many 
theoretical attempts to explain this phenomenon, one simple approach has been to 
assume that multiple vortices result from a largely two-dimensional instability 
mechanism. In  such a case, only the axial vorticity distribution in a cross-section 
through the vortex is relevant to the determination of stability. Probably the 
simplest such vorticity distribution that leads to (two-dimensional) linear instabilities 
favouring low numbers of vortices is the annular vortex. We have determined that 
these instabilities do indeed evolve into multiple vortices, but, on the other hand, 
the annular vortex cannot generate the vortex pair so frequently observed in nature. 
A more viable alternative is offered in Dritschel(l986) in which the three-dimensional 
linear stability of a subclass of vortex flows is considered. 

The merger and breakup of vortices occur regularly in geophysical flows. Chris- 
tiansen & Zabusky (1973), in their study of vortex wakes, used a ‘Vortex-in-Cell’ 
model to illustrate the complicated dynamics of interacting vortices. After the wake 
destabilizes, coherent vortex structures arise which subsequently rip apart and 
merge. In the stratosphere, where potential vorticity is advected almost conserva- 
tively along isentropic surfaces, data (McIntyre & Palmer 1984) show the ‘ polar-night ’ 
vortex, an intense, persistent winter-time vortex, being ripped into two or shedding 
filaments of vorticity. The vortex appears to rip apart once it has become sufficiently 
elliptical while the shedding process occurs almost continually when the vortex is 
dominantly circular, this process apparently developing from small wave-breaking 
events (McIntyre & Palmer 1984). The understanding of the dynamics of vortex 
merger and fission would thus aid in the interpretation of many observations, and, 
as a beginning, the study of simple vorticity distributions may lead to a rough 
explanation of observed vortex dynamics. 
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Appendix. Calculation of conserved quantities by contour integrals 
This Appendix expresses certain area integrals in terms of contour integrals for 

piecewise-constant vorticity distributions in two dimensions. Consider first the total 
circulation r given by 

= w dx dy = &J, jJRi dz dy , JJ i 

6 fCi 

(A 1) 

where W ,  is the uniform vorticity in region R, and the sum extends over all such 
regions. Using Stokes’ theorem, 

r = Z @ g  (XidYi- YidX,), (A 2) 

where Q, is the jump in vorticity across the outer boundary, C,, of R, (R, is to the 
left when traversing C, in the positive sense: 6, is the vorticity just inside C, minus 
that just outside), and (X,, Y,) is a point on C,. Consider next the angular momentum 
(second moment) 

** * *  

In terms of contour integrals, 

The difficult calculation rests with the (excess) energy : 

where 

with l2 = J /Tand r2 = ( ~ - x ’ ) ~ +  ( y - ~ ’ ) ~ .  
$s can be transformed to 

47t1,4 = -r+ z&, [(Xi-~)dYi-(Yi-y)dX,’], (A 7)  
i 

where (r;)2 = ( ~ - X i ) ~ + ( y -  Yi)2. After carrying out extensive algebra, we find that 
T, may be expressed in compact form as 

where (rij)z = lXj-Xi12. Computational experience has proven that this expression 
converges very rapidly with increasing resolution. 
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